GROWTH RATES OF TOTAL VARIATIONS OF SNAPSHOTS OF THE 1D LINEAR WAVE EQUATION WITH COMPOSITE NONLINEAR BOUNDARY REFLECTION RELATIONS

Author:

HUANG YU1

Affiliation:

1. Department of Mathematics, Zhongshan University, Guangzhou 510275, P.R. China

Abstract

The linear wave equation on an interval with a van der Pol nonlinear boundary condition at one end and an energy-pumping condition at the other end is a useful model for studying chaotic behavior in distributed parameter system. In this paper, we study the dynamics of the Riemann invariants (u, v) of the wave equation by means of the total variations of the snapshots on the spatial interval. Our main contributions here are the classification of the growth of total variations of the snapshots of u and v in long-time horizon, namely, there are three cases when a certain parameter enters a different regime: the growth(i) remains bounded;(ii) is unbounded (but nonexponential);(iii) is exponential,for a large class of initial conditions with finite total variations. In particular, case (iii) corresponds to the onset of chaos. The results here sharpen those in an earlier work [Chen et al., 2001].

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Li–Yorke Chaos in Linear Systems with Weak Topology on Hilbert Spaces;International Journal of Bifurcation and Chaos;2024-07-20

2. Chaos of Multi-dimensional Weakly Hyperbolic Equations with General Nonlinear Boundary Conditions;Journal of Nonlinear Science;2024-05-02

3. Li-Yorke chaos in weak topology of the n-dimensional linear systems;Journal of Mathematical Analysis and Applications;2024-01

4. Chaotic vibration of a two-dimensional wave equation with nonlinear boundary condition;Journal of Mathematical Analysis and Applications;2023-09

5. Observability and Observers for a Class of Two-Dimensional Hyperbolic PDE Chaotic Systems;SIAM Journal on Control and Optimization;2023-07-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3