Slow-Scale and Fast-Scale Instabilities in Parallel-Connected Single-Phase H-Bridge Inverters: A Design-Oriented Study

Author:

Yang Lihui1ORCID,Yang Lan1,Yang Fang2,Ma Xikui1

Affiliation:

1. The State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China

2. Xi’an University of Science and Technology, Xi’an 710054, P. R. China

Abstract

This paper reports the slow- and fast-scale instabilities in the parallel-connected single-phase H-bridge inverters and discusses the two types of instabilities from the practical design viewpoint. Simulations show that the slow-scale instability which occurs in the whole line cycle is a type of global instability, whereas the fast-scale instability which occurs around the middle time of each half-line cycle is a type of local instability. In order to reveal the mechanisms of the slow- and fast-scale instabilities, theoretical analyses are carried out through the derived averaged model and discrete-time model, respectively. It is identified that the slow-scale instability is due to the occurrence of Hopf bifurcation, and the fast-scale instability manifests itself as period-doubling bifurcation. Furthermore, stability boundaries in various design parameter spaces considering the mismatches in different system parameters between inverter modules, as well as the effects of the current-sharing control loop on the slow- and fast-scale instabilities are also given. Besides, the influences of the nonlinear load and the control method for parallel system on the two types of instabilities are briefly discussed. These findings can be used to guide the tuning of the paralleled inverter system parameters to ensure stable operation in practice. Finally, experimental results are presented to verify the results of the simulation and theoretical analysis.

Funder

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Shaanxi Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3