Transition Dynamics of Epileptic Seizures in the Coupled Thalamocortical Network Model

Author:

Cao Ying1,He Xiaoyan2,Hao Yuqing1,Wang Qingyun1ORCID

Affiliation:

1. Department of Dynamics and Control, Beihang University, Beijing 100191, P. R. China

2. Department of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Huhhot 010070, P. R. China

Abstract

In this paper, based on the two-compartment unidirectionally coupled thalamocortical model network, we investigated the transition dynamics of epileptic seizures, by considering the inhibitory coupling strength from cortical inhibitory interneuronal (IN) population to excitatory pyramidal (PY) neuronal population as the key bifurcation parameter. The results show that in the single compartment thalamocortical model, inner-compartment inhibitory functions of IN can make the system transit from the absence seizures to the tonic oscillations. In the case of two-compartment coupled thalamocortical model network, the inter-compartment inhibitory coupling functions from the first compartment can drive the second compartment to more easily initiate the absence and tonic seizures at the lower inhibitory coupling strengths, respectively. Also, the driven functions can make the amplitudes of these seizures vary irregularly. Detailed investigations reveal that along with the various state transitions, the system consecutively undergoes Hopf bifurcations, fold of cycles bifurcations and torus bifurcations, respectively. In particular, the reinforcing inter-compartment inhibitory coupling function can induce the chaotic dynamics. We highlight the unidirectional coupling functions between two compartments which might give new insights into the propagation and evolution dynamics of epileptic seizures.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3