DYNAMICAL INTEGRATION

Author:

BROWN RAY1,CHUA LEON O.1

Affiliation:

1. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA. 94720, USA

Abstract

In this letter we show how to use a new form of integration, called dynamical integration, that utilizes the dynamics of a system defined by an ODE to construct a map that is in effect a one-step integrator. This method contrasts sharply with classical numerical methods that utilize polynomial or rational function approximations to construct integrators. The advantages of this integrator is that it uses only one step while preserving important dynamical properties of the solution of the ODE: First, if the ODE is conservative, then the one-step integrator is measure preserving. This is significant for a system having a highly nonlinear component. Second, the one-step integrator is actually a one-parameter family of one-step maps and is derived from a continuous transformation group as is the set of solutions of the ODE. If each element of the continuous transformation group of the ODE is topologically conjugate to its inverse, then so is each member of the one-parameter family of one-step integrators. If the solutions of the ODE are elliptic, then for sufficiently small values of the parameter, the one-step integrator is also elliptic. In the limit as the parameter of the one-step family of maps goes to zero, the one-step integrator satisfies the ODE exactly. Further, it can be experimentally verified that if the ODE is chaotic, then so is the one-step integrator. In effect, the one-step integrator retains the dynamical characteristics of the solutions of the ODE, even with relatively large step sizes, while in the limit as the parameter goes to zero, it solves the ODE exactly. We illustrate the dynamical, in contrast to numerical, accuracy of this integrator with two distinctly different examples: First we use it to integrate the unforced Van der Pol equation for large ∊, ∊≥10 which corresponds to an almost continuous square-wave solution. Second, we use it to obtain the Poincaré map for two different versions of the periodically forced Duffing equation for parameter values where the solutions are chaotic. The dynamical accuracy of the integrator is illustrated by the reproduction of well-known strange attractors. The production of these attractors is eleven times longer when using a conventional fourth-order predictor-corrector method. The theory presented here extends to higher dimensions and will be discussed in detail in a forthcoming paper. However, we caution that the theory we present here is not intended as a line of research in numerical methods for ODEs.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LIE SERIES TECHNIQUE, LIMIT CYCLE SYSTEMS AND DYNAMICAL INTEGRATION;International Journal of Modern Physics C;2004-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3