CHAOS IN A NEAR-INTEGRABLE HAMILTONIAN LATTICE

Author:

ROTHOS VASSILIOS M.1,ANTONOPOULOS CHRIS2,DROSSOS LAMBROS2

Affiliation:

1. Nonlinear and Complex Systems Group, Department of Mathematical Sciences, Loughborough University, Loughborough, LE11 3TU, UK

2. Department of Mathematics, Centre for Research and Applications of Nonlinear Systems, University of Patras, Patras GR 261 10, Greece

Abstract

We study the chaotic dynamics of a near-integrable Hamiltonian Ablowitz–Ladik lattice, which is N + 2-dimensional if N is even (N + 1, if N is odd) and possesses, for all N, a circle of unstable equilibria at ε = 0, whose homoclinic orbits are shown to persist for ε ≠ 0 on whiskered tori. The persistence of homoclinic orbits is established through Mel'nikov conditions, directly from the Hamiltonian structure of the equations. Numerical experiments which combine space portraits and Lyapunov exponents are performed for the perturbed Ablowitz–Ladik lattice and large scale chaotic behavior is observed in the vicinity of the circle of unstable equilibria in the ε = 0 case. We conjecture that this large scale chaos is due to the occurrence of saddle-center type fixed points in a perturbed 1 d.o.f Hamiltonian to which the original system can be reduced for all N. As ε > 0 increases, the transient character of this chaotic behavior becomes apparent as the positive Lyapunov exponents steadily increase and the orbits escape to infinity.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3