Testing for Linear and Nonlinear Gaussian Processes in Nonstationary Time Series

Author:

Rios Ricardo Araújo1,Small Michael2,de Mello Rodrigo Fernandes3

Affiliation:

1. Department of Computer Science, Federal University of Bahia, Av. Adhemar de Barros, S/N, Ondina, Salvador, BA, Brazil

2. School of Mathematics and Statistics, The University of Western Australia, Crawley, WA 6009, Australia

3. Institute of Mathematics and Computer Science, University of São Paulo, Avenida Trabalhador Sãocarlense, 400, São Carlos, P. O. Box 668, SP, Brazil

Abstract

Surrogate data methods have been widely applied to produce synthetic data, while maintaining the same statistical properties as the original. By using such methods, one can analyze certain properties of time series. In this context, Theiler's surrogate data methods are the most commonly considered approaches. These are based on the Fourier transform, limiting them to be applied only on stationary time series. Consequently, time series including nonstationary behavior, such as trend, produces spurious high frequencies with Theiler's methods, resulting in inconsistent surrogates. To solve this problem, we present two new methods that combine time series decomposition techniques and surrogate data methods. These new methods initially decompose time series into a set of monocomponents and the trend. Afterwards, traditional surrogate methods are applied on those individual monocomponents and a set of surrogates is obtained. Finally, all individual surrogates plus the trend signal are combined in order to create a single surrogate series. Using this method, one can investigate linear and nonlinear Gaussian processes in time series, irrespective of the presence of nonstationary behavior.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3