CHAOS ENTANGLEMENT: A NEW APPROACH TO GENERATE CHAOS

Author:

ZHANG HONGTAO1,LIU XINZHI1,SHEN XUEMIN2,LIU JUN3

Affiliation:

1. Department of Applied Mathematics, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada

2. Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada

3. Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin Street, Sheffield, Yorkshire S1 3JD, UK

Abstract

A new approach to generate chaotic phenomenon, called chaos entanglement, is proposed in this paper. The basic principle is to entangle two or multiple stable linear subsystems by entanglement functions to form an artificial chaotic system such that each of them evolves in a chaotic manner. Firstly, a new attractor, entangling a two-dimensional linear subsystem and a one-dimensional one by sine function, is presented as an example. Dynamical analysis shows that both entangled subsystems are bounded and all equilibra are unstable saddle points when chaos entanglement is achieved. Also, numerical computation shows that this system has one positive Lyapunov exponent, which implies chaos. Furthermore, two conditions are given to achieve chaos entanglement. Along this way, by different linear subsystems and different entanglement functions, a variety of novel chaotic attractors have been created and abundant complex dynamics are exhibited. Our discovery indicates that it is not difficult any more to construct new artificial chaotic systems/networks for engineering applications such as chaos-based secure communication. Finally, a possible circuit is given to realize these new chaotic attractors.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3