The Generalization of the Periodic Orbit Dividing Surface in Hamiltonian Systems with Three or More Degrees of Freedom – I

Author:

Katsanikas Matthaios1ORCID,Wiggins Stephen1

Affiliation:

1. School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol BS8 1UG, UK

Abstract

We present a method that generalizes the periodic orbit dividing surface construction for Hamiltonian systems with three or more degrees of freedom. We construct a torus using as a basis a periodic orbit and we extend this to a ([Formula: see text])-dimensional object in the ([Formula: see text])-dimensional energy surface. We present our methods using benchmark examples for two and three degrees of freedom Hamiltonian systems to illustrate the corresponding algorithm for this construction. Towards this end, we use the normal form quadratic Hamiltonian system with two and three degrees of freedom. We found that the periodic orbit dividing surface can provide us the same dynamical information as the dividing surface constructed using normally hyperbolic invariant manifolds. This is significant because, in general, computations of normally hyperbolic invariant manifolds are very difficult in Hamiltonian systems with three or more degrees of freedom. However, our method avoids this computation and the only information that we need is the location of one periodic orbit.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3