STRUCTURAL ORGANIZATION OF FUNCTIONAL NETWORKS FROM EEG SIGNALS DURING MOTOR LEARNING TASKS

Author:

DE VICO FALLANI FABRIZIO12,BALUCH FARHAN3,ASTOLFI LAURA14,SUBRAMANIAN DEVIKA5,ZOURIDAKIS GEORGE3,BABILONI FABIO3

Affiliation:

1. IRCCS Fondazione Santa Lucia, Rome, Italy

2. Interdepartmental Centre CISB, University Sapienza, Rome, Italy

3. Biomedical Imaging Lab, Department of Computer Science, University of Houston, TX, USA

4. Department of Human Physiology and Pharmacology, University Sapienza, Rome, Italy

5. Department of Computer Science, Rice University, Houston, TX, USA

Abstract

The evaluation of the topological properties of brain networks is an emerging research topic, since the estimated cerebral connectivity patterns often have relatively large size and complex structure. Since a graph is a mathematical representation of a network, the use of a theoretical graph approach would describe concisely the topological features of the functional network estimated from neuroimaging techniques. In particular, by applying the process of coherence analysis to high-density EEG recordings, rich visualizations can be developed that provide a means for spatiotemporal analysis of changes in synchronous brain activity. In the present work, we studied the changes in brain synchronization networks during performance of a complex visuomotor task with strategic components in normal subjects. In particular, we evaluated the differences in the functional network topology associated with human learning by calculating global and local efficiency indexes. Our results suggest that during an initial period of learning, which is probably related to the most significant cognitive processes, the particular organization of functional links in the alpha frequency band (8–12 Hz) tends to increase the efficiency of communication within the cerebral network. Such evidence could be interpreted as due to the need for a new strategy formulation. Overall, this approach enabled us to capture a shift in topology made during the process of learning and thus helped us to shed more light on the neural correlates of strategy formulation. Our findings provide strong support for the efficacy of theoretical graph analysis to study complex brain networks.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3