IMPROVED NUMERICAL FLOQUET MULTIPLIERS

Author:

LUST KURT1

Affiliation:

1. Department of Computer Science, K.U.Leuven, Heverlee, Belgium

Abstract

This paper studies numerical methods for linear stability analysis of periodic solutions in codes for bifurcation analysis of small systems of ordinary differential equations (ODEs). Popular techniques in use today (including the AUTO97 method) produce very inaccurate Floquet multipliers if the system has very large or small multipliers. These codes compute the monodromy matrix explicitly or as a matrix pencil of two matrices. The monodromy matrix arises naturally as a product of many matrices in many numerical methods, but this is not exploited. In this case, all Floquet multipliers can be computed with very high precision by using the periodic Schur decomposition and corresponding algorithm [Bojanczyk et al., 1992]. The time discretisation of the periodic orbit becomes the limiting factor for the accuracy. We present just enough of the numerical methods to show how the Floquet multipliers are currently computed and how the periodic Schur decomposition can be fitted into existing codes but omit all details. However, we show extensive test results for a few artificial matrices and for two four-dimensional systems with some very large and very small Floquet multipliers to illustrate the problems experienced by current techniques and the better results obtained using the periodic Schur decomposition. We use a modified version of AUTO97 [Doedel et al., 1997] in our experiments.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of quasi-zero-stiffness elastic diodes for low-frequency nonreciprocity through machine learning;Acta Mechanica Sinica;2024-05-16

2. Period-Multiplying Bifurcations in the Gravitational Field of Asteroids;Aerospace;2024-04-18

3. Bandgap formation and chaos in periodic lattices with graded bistable resonators;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2024-01-27

4. Dimension Reduction of Collective Attention Networks;International Journal of Bifurcation and Chaos;2023-09-15

5. Quasinormal modes from Penrose limits;Classical and Quantum Gravity;2023-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3