Affiliation:
1. School of Science, Lanzhou University of Technology, Lanzhou, Gansu 730050, P. R. China
Abstract
In this paper, the dynamics of a three-species food chain model with two predators infected by an infectious disease is investigated. The positivity and boundedness of the system, the existence of the equilibria and the basic reproductive number are given. Sufficient conditions for the local stability of all equilibria are obtained by analyzing the corresponding characteristic equations. By constructing suitable Lyapunov functions and taking the geometric approach, the global stability of all equilibria is proved. According to the center manifold theory, this model undergoes the phenomenon of backward and forward bifurcations in a certain range of the basic reproductive number [Formula: see text]. By taking the disease transmission coefficient of predator as bifurcation parameter, Hopf bifurcation emerges in the neighborhood of the endemic equilibrium. Furthermore, the optimal control of the disease is discussed by the Pontryagin’s maximum principle. Various simulations are given to support the analytical results.
Funder
National Natural Science Foundation of China
the HongLiu First-class Disciplines Development Program of Lanzhou University of Technology
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献