SPATIOTEMPORAL STRUCTURES IN DISCRETELY-COUPLED ARRAYS OF NONLINEAR CIRCUITS: A REVIEW

Author:

MUÑUZURI A.P.1,PÉREZ-MUÑUZURI V.1,GÓMEZ-GESTEIRA M.1,CHUA L.O.1,PÉREZ-VILLAR V.1

Affiliation:

1. Group of Nonlinear Physics, Faculty of Physics, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain

Abstract

Spatiotemporal pattern formation occurring in discretely-coupled nonlinear dynamical systems has been studied numerically. Reaction-diffusion systems can be viewed as an assembly of a large number of identical local subsystems which are coupled to each other by diffusion. Here, the local subsystems are defined by a system of nonlinear ordinary differential equations. While for continuous systems, the characteristic time scale corresponding to the diffusion is slower than that corresponding to the local subsystems, in discretely-coupled systems, both time scales can be of the same order of magnitude. Discrete systems can exhibit behaviors different from those exhibited by their equivalent continuous model: the wave propagation failure phenomenon occurring in nerve-pulse propagation due to transmission blockage is a case in point. In this case, it is found that the wave fails to propagate at or below some critical value of the coupling coefficient. Systems of coupled cells can be found to occur in the transformation and transport processes in living cells, tissues, neuron networks, physiological systems and ecosystems, as well as in all forms of chemical, biochemical reactors and combustion systems. In this paper, we review the possibilities of using arrays of discretely-coupled nonlinear electronic circuits to study these systems. The possibility of building large arrays of these circuits via VLSI technology makes this approach a unique tool for real time applications. Classical examples occurring in other continuous media, such as spiral wave initiation and propagation, and Turing pattern formation, are depicted here. Because of the discrete nature of our system, the influence of inhomogeneities arising from damaged cells, or from an anisotropic media, is analyzed for spiral wave propagation. Spiral wave initiation and vulnerability effects are considered and compared with their corresponding effects in continuous media. More complex spatiotemporal structures are also studied via three-dimensional arrays of discretely-coupled circuits. Straight and twisted scroll waves, as well as scroll ring waves, are shown to exist in these arrays, where their properties can be easily measured. Sidewall forcing of Turing patterns is shown to be capable of driving the system into a perfect spatial organization, namely, a rhombic pattern, where no defects occur. The dynamics of the two layers supporting Turing and Hopf modes, respectively, is analyzed as a function of the coupling strength between them. The competition between these two modes is shown to increase with the diffusion between layers.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stability of traveling wave in a PDE approximation of coupled arrays of Chua's circuit;Journal of Differential Equations;2022-03

2. Spatiotemporal Pattern Formation in a Ring of Chua’s Oscillators;Regular and Chaotic Dynamics;2021-11

3. Turing Instability and Hopf Bifurcation in Cellular Neural Networks;International Journal of Bifurcation and Chaos;2021-06-26

4. Dynamics of a particle periodically driven in the deformable potentials: Stochastic resonance;Physica A: Statistical Mechanics and its Applications;2019-08

5. Chaotic Traveling Wave Solutions in Coupled Chua’s Circuits;Journal of Dynamics and Differential Equations;2017-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3