ON THE DYNAMICAL DEGRADATION OF DIGITAL PIECEWISE LINEAR CHAOTIC MAPS

Author:

LI SHUJUN1,CHEN GUANRONG2,MOU XUANQIN3

Affiliation:

1. Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China

2. Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China

3. School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China

Abstract

When chaotic systems are realized with finite precisions in digital computers, their dynamical properties are often found to be entirely different from the original versions in the continuous setting. In the literature, there does not seem to be much work on quantitative analysis of such degradation of digitized chaos and how to reduce its negative influence on chaos-based digital systems. Focusing on 1D piecewise linear chaotic maps (PWLCM), this paper reports some findings on a new series of dynamical indicators, which can quantitatively reflect the degradation effects on a digital PWLCM realized with a fixed-point finite precision. On top of that, the paper introduces a new method for studying digital chaos from an algorithmic point of view. In addition, the theoretical results obtained in this paper should be very helpful for the consideration of reducing negative influence of dynamical degradation in real design of various digital chaotic systems. As typical examples, the proposed dynamical indicators are applied to the performance comparison of different remedies for improving dynamical degradation, cryptanalysis of digital chaotic ciphers based on 1D PWLCM, and design of chaotic pseudo-random number generators with desired characteristics.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 294 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3