Instability and Pattern Formation in Three-Species Food Chain Model via Holling Type II Functional Response on a Circular Domain

Author:

Abid Walid1,Yafia R.2,Aziz Alaoui M. A.3,Bouhafa H.4,Abichou A.4

Affiliation:

1. University of Tunis El Manar, National Engineering School of Tunis, Laboratory of Engineering Mathematics EPT, BP 743, La Marsa 2078, Tunisia

2. Ibn Zohr University, Polydisciplinary Faculty of Ouarzazate, BP 638, Ouarzazate, Morocco

3. LMAH, University of Le Havre, 25 rue Ph. Lebon, BP 540, 76058 Le Havre Cedex, France

4. Laboratory of Engineering Mathematics, Polytechnic School, BP 743, La Marsa 2078, Tunisia

Abstract

This paper is devoted to the study of food chain predator–prey model. This model is given by a reaction–diffusion system defined on a circular spatial domain, which includes three-state variables namely, prey and intermediate predator and top predator and incorporates the Holling type II and a modified Leslie–Gower functional response. The aim of this paper is to investigate theoretically and numerically the asymptotic behavior of the interior equilibrium of the model. The local and global stabilities of the positive steady-state solution and the conditions that enable the occurrence of Hopf bifurcation and Turing instability in the circular spatial domain are proved. In the end, we carry out numerical simulations to illustrate how biological processes can affect spatiotemporal pattern formation in a disc spatial domain and different types of spatial patterns with respect to different time steps and diffusion coefficients are obtained.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bifurcation Analysis and Steady-State Patterns in Reaction–Diffusion Systems Augmented with Self- and Cross-Diffusion;International Journal of Bifurcation and Chaos;2023-07

2. Dynamical analysis of a diffusion plant-wrack model with delay;Ecological Complexity;2023-06

3. Turing–Hopf Bifurcation Analysis of the Sel’kov–Schnakenberg System;International Journal of Bifurcation and Chaos;2023-01

4. A New Epidemic Model with Direct and Indirect Transmission with Delay and Diffusion;4th International Conference on Artificial Intelligence and Applied Mathematics in Engineering;2023

5. Hopf-Bifurcation and Pattern Selections in a Three Trophic Level Food Web System;International Journal of Bifurcation and Chaos;2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3