Affiliation:
1. School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, P. R. China
2. College of Mechanical Engineering, Beijing University of Technology, Beijing 100022, P. R. China
Abstract
Functionally graded (FG) graphene reinforced composite (GRC) is a new class of advanced composite materials. In GRC, several layers of graphene platelets (GPLs) are randomly or uniformly dispersed in matrix. These GPLs have uniform arrangement, or are arranged with gradient, in the direction of thickness in accordance with three different graphene distribution rules. In this study, the nonlinear dynamic analysis of FG GRC truncated conical shells, subjected to a combined action of transverse excitation and axial force, is performed using the first shear deformation theory (FSDT). Estimation of equivalent Young’s modulus of the composites is calculated using a modified Halpin–Tsai model. In addition, a partial differential equation model is developed based on the Hamilton principle and nonlinear strain-displacement relationship. The Galerkin method and the fourth-order Runge–Kutta method are used to solve the equation. The dimensionless linear natural frequency of an FG GRC truncated conical shell is calculated by the Rayleigh–Ritz method and compared with available results in the literature to verify the accuracy of the present model. Simultaneously, significant effects of the different parameters, such as the total layer numbers, semi-vertex angles, GPLs weight fractions, distribution patterns and the length-to-thickness ratios, on the nonlinear dynamics including bifurcation and chaos of FG GRC truncated conical shells are investigated.
Funder
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献