SELF-ORGANIZATION IN NONRECURRENT COMPLEX SYSTEMS

Author:

ARENA PAOLO1,CAPONETTO RICCARDO1,FORTUNA LUIGI1,RIZZO ALESSANDRO1,LA ROSA MANUELA2

Affiliation:

1. Università di Catania, Dipartimento Elettrico Elettronico e Sistemistico, Viale A. Doria 6, 95125 Catania, Italy

2. ST Microelectronics — Soft Computing Group — Catania site, Stradale Primosole 50, 95100 Catania, Italy

Abstract

In this paper, systems formed by networks of simple nonlinear cells are studied. Using lattice models, some of the fundamental features of complex systems such as self-organization and pattern formation are illustrated. In the first part of this work, a lattice of identical Chua's circuit is used to experimentally study its global spatiotemporal dynamics, according to the variation of some macroparameters, like the coupling coefficient or the neighboring dimension. The second part of the paper deals with the remarkable improvements regarding regularization and pattern formation, obtained in networks of nonlinear systems by introducing some spatial diversity, especially generated by deterministic, unpredictable dynamics. Simulation results show that synchronization and self-organization occur in networks with a few nonlocally connected cells, with irregular topology and small spatial diversity.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3