CHAOS ROBUSTNESS AND STRENGTH IN THERMOMECHANICAL SHAPE MEMORY OSCILLATORS PART I: A PREDICTIVE THEORETICAL FRAMEWORK FOR THE PSEUDOELASTIC BEHAVIOR

Author:

BERNARDINI DAVIDE1,REGA GIUSEPPE1

Affiliation:

1. Dipartimento di Ingegneria Strutturale e Geotecnica, 'Sapienza' Università di Roma, Via Antonio Gramsci 53, 00197 Roma, Italy

Abstract

In this two-part paper the problem of evaluating robustness and strength of chaos in thermomechanically-based Shape Memory Oscillators (SMO) is addressed. In the first part, a theoretical analysis of the main features of the pseudoelastic loops exhibited by the underlying Shape Memory Devices (SMD) is accomplished with the aim to establish a predictive framework for accompanying numerical investigations. The analysis is based on the evaluation of suitable synthetic indicators of the SMD behavior that can be computed from the model parameters before the computation of SMO actual trajectories, and provide information about the hysteresis loops and their dependence on temperature variations. By means of such indicators, a detailed analysis of the influence of thermomechanical coupling on the rate-dependent mechanical response is presented. It is shown that a careful interpretation of the synthetic indicators permits to obtain a reasonable estimation of the influence of various model parameters on the hysteresis loop area and slopes of the pseudoelastic plateaus, that are the main global aspects influencing the occurrence of chaotic responses. In the second part, the theoretical predictions based on the synthetic indicators will be exploited to interpret the results of a systematic numerical investigation based on an enhanced version of the Method of Wandering Trajectories.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3