GLOBAL CLASSIFICATION OF A CLASS OF CUBIC VECTOR FIELDS WHOSE CANONICAL REGIONS ARE PERIOD ANNULI

Author:

CAUBERGH M.1,LLIBRE J.1,TORREGROSA J.1

Affiliation:

1. Departament de Matemàtiques, Edifici C. 08193 Bellaterra, Barcelona, Spain

Abstract

We study cubic vector fields with inverse radial symmetry, i.e. of the form ẋ = δx - y + ax2+ bxy + cy2+ σ(dx - y)(x2+ y2), ẏ = x + δy + ex2+ fxy + gy2+ σ(x + dy) (x2+ y2), having a center at the origin and at infinity; we shortly call them cubic irs-systems. These systems are known to be Hamiltonian or reversible. Here we provide an improvement of the algorithm that characterizes these systems and we give a new normal form.Our main result is the systematic classification of the global phase portraits of the cubic Hamiltonian irs-systems respecting time (i.e. σ = 1) up to topological and diffeomorphic equivalence. In particular, there are 22 (resp. 14) topologically different global phase portraits for the Hamiltonian (resp. reversible Hamiltonian) irs-systems on the Poincaré disc.Finally we illustrate how to generalize our results to polynomial irs-systems of arbitrary degree. In particular, we study the bifurcation diagram of a 1-parameter subfamily of quintic Hamiltonian irs-systems. Moreover, we indicate how to construct a concrete reversible irs-system with a given configuration of singularities respecting their topological type and separatrix connections.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3