Affiliation:
1. Departament de Matemàtiques, Edifici C. 08193 Bellaterra, Barcelona, Spain
Abstract
We study cubic vector fields with inverse radial symmetry, i.e. of the form ẋ = δx - y + ax2+ bxy + cy2+ σ(dx - y)(x2+ y2), ẏ = x + δy + ex2+ fxy + gy2+ σ(x + dy) (x2+ y2), having a center at the origin and at infinity; we shortly call them cubic irs-systems. These systems are known to be Hamiltonian or reversible. Here we provide an improvement of the algorithm that characterizes these systems and we give a new normal form.Our main result is the systematic classification of the global phase portraits of the cubic Hamiltonian irs-systems respecting time (i.e. σ = 1) up to topological and diffeomorphic equivalence. In particular, there are 22 (resp. 14) topologically different global phase portraits for the Hamiltonian (resp. reversible Hamiltonian) irs-systems on the Poincaré disc.Finally we illustrate how to generalize our results to polynomial irs-systems of arbitrary degree. In particular, we study the bifurcation diagram of a 1-parameter subfamily of quintic Hamiltonian irs-systems. Moreover, we indicate how to construct a concrete reversible irs-system with a given configuration of singularities respecting their topological type and separatrix connections.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献