NOISE-INDUCED FIRST-ORDER PHASE TRANSITIONS IN CHAOTIC BRAIN ACTIVITY

Author:

FREEMAN WALTER J.1

Affiliation:

1. Division of Neurobiology LSA 129, Department of Molecular & Cell Biology, University of California, Berkeley CA 94720-3200, USA

Abstract

Brain electrical activity in animals during normal behaviors has aperiodic wave forms suggesting its origin in chaotic dynamics. Attempts at finding experimental proofs using low-dimensional, deterministic chaotic models have not succeeded. The assumptions of autonomy, stationarity,and noise-free operation that are needed to define these at tractors and their embedding dimensions have been shown not to hold for brains, because numerical estimates of correlation dimensions and Lyapunov exponents have failed to converge to normative values. Analysis of EEGs from sensory cortices show that a very different model applies to brains, which is more closely related to lasers than models of twist–flip maps and reaction–diffusion systems. Neurons interact with each other through channels with nonlinear, amplitude-dependent gains, by which they form fields of white noise. When the strengths of interaction are increased by input from receptors, the neurons interact more strongly and lose their high degrees of freedom. The macroscopic constraint on their activity appears as an order parameter in the form of spatially coherent, indeterministic chaos.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3