Similar Master Stability Functions for Different Coupling Schemes in Basic Chaotic Systems

Author:

Dayani Zahra1,Parastesh Fatemeh12,Jafari Sajad13,Schöll Eckehard456,Kurths Jürgen67,Sprott Julien Clinton8

Affiliation:

1. Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran

2. Centre for Nonlinear Systems, Chennai Institute of Technology, Chennai, India

3. Health Technology Research Institute, Amirkabir University of Technology (Tehran Polytechnic), Iran

4. Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany

5. Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität, 10115 Berlin, Germany

6. Potsdam Institute for Climate Impact Research, Telegrafenberg A 31, 14473 Potsdam, Germany

7. Department of Physics, Humboldt University Berlin, Berlin 12489, Germany

8. Department of Physics, University of Wisconsin–Madison, Madison, WI 53706, USA

Abstract

Synchronization is a prominent phenomenon in coupled chaotic systems. The master stability function (MSF) is an approach that offers the prerequisites for the stability of complete synchronization, which is dependent on the coupling configuration. In this paper, some basic chaotic systems with the general form of the Sprott-A, Sprott-B, Sprott-D, Sprott-F, Sprott-G, Sprott-O, and Jerk systems are considered. For each system, their parametric form is designed, and constraints required to have similar MSFs in different coupling schemes are determined. Then, the parameters of the designed chaotic systems are found through an exhaustive computer search seeking chaotic solutions. The simplest cases found in this way are introduced, and similar synchronization patterns are confirmed numerically.

Funder

Chennai Institute of Technology, India

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analytical studies on third-order chaotic systems with Sprott type nonlinearities and their microcontroller implementation;Physica Scripta;2024-03-22

2. Dynamic Analysis of Novel Memristor Chaotic Systems with Influence Factors;2023 IEEE International Conference on Electrical, Automation and Computer Engineering (ICEACE);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3