DYNAMICS OF A TWO DEGREE OF FREEDOM VIBRO-IMPACT SYSTEM WITH MULTIPLE MOTION LIMITING CONSTRAINTS

Author:

WAGG D. J.1,BISHOP S. R.2

Affiliation:

1. Department of Mechanical Engineering, University of Bristol, Queens Building, University Walk, Bristol, BS8 1TR, UK

2. Centre for Nonlinear Dynamics and Its Applications, University College London, Gower Street, London, WC1E 6BT, UK

Abstract

We consider the dynamics of impact oscillators with multiple degrees of freedom subject to more than one motion limiting constraint or stop. A mathematical formulation for modeling such systems is developed using a modal approach including a modal form of the coefficient of restitution rule. The possible impact configurations for an N degree of freedom system are considered, along with definitions of the impact map for multiply constrained systems. We consider sticking motions that occur when a single mass in the system becomes stuck to an impact stop, and discuss the computational issues related to computing such solutions. Then using the example of a two degree of freedom system with two constraints we describe exact modal solutions for the free flight and sticking motions which occur in this system. Numerical examples of sticking orbits for this system are shown and we discuss identifying the region, S in phase space where these orbits exist. We use bifurcation diagrams to indicate differing regimes of vibro-impacting motion for two different cases; firstly when the stops are both equal and on the same side (i.e. the same sign) and secondly when the stops are unequal and of opposing sign. For these two different constraint configurations we observe qualitatively different dynamical behavior, which is interpreted using impact mappings and two-dimensional parameter space.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3