ON DIMENSION OF NON-LOCAL BIFURCATIONAL PROBLEMS

Author:

TURAEV D.1

Affiliation:

1. Department of Differential Equations, Institute for Applied Mathematics and Cybernetics, 10 Ul’janova St., Nizhny Novgorod 603005, Russia

Abstract

An analogue of the center manifold theory is proposed for non-local bifurcations of homo- and heteroclinic contours. In contrast with the local bifurcation theory it is shown that the dimension of non-local bifurcational problems is determined by the three different integers: the geometrical dimension dg which is equal to the dimension of a non-local analogue of the center manifold, the critical dimension dc which is equal to the difference between the dimension of phase space and the sum of dimensions of leaves of associated strong-stable and strong-unstable foliations, and the Lyapunov dimension dL which is equal to the maximal possible number of zero Lyapunov exponents for the orbits arising at the bifurcation. For a wide class of bifurcational problems (the so-called semi-local bifurcations) these three values are shown to be effectively computed. For the orbits arising at the bifurcations, effective restrictions for the maximal and minimal numbers of positive and negative Lyapunov exponents (correspondingly, for the maximal and minimal possible dimensions of the stable and unstable manifolds) are obtained, involving the values dc and dL. A connection with the problem of hyperchaos is discussed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Persistence of heterodimensional cycles;Inventiones mathematicae;2024-04-10

2. The Third Type of Dynamics and Poincaré Homoclinic Trajectories;Radiophysics and Quantum Electronics;2024-02

3. On the Regularity of Invariant Foliations;Regular and Chaotic Dynamics;2024-01

4. Attractors. Then and now;Russian Mathematical Surveys;2023

5. Attractors. Then and now;Uspekhi Matematicheskikh Nauk;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3