Instabilities of Nonconservative Fluid-Loaded Systems

Author:

Thompson J. Michael T.1,Virgin Lawrence N.2

Affiliation:

1. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK

2. School of Engineering, Duke University, Durham, NC 27708, USA

Abstract

Nonlinear bifurcations and instabilities of autonomous nonconservative systems, mainly involving the fluid loading of a solid or structure, are reviewed and described in this accessible, pictorial overview. In contrast to the earlier papers in this series (focusing on the instability of elastic deformable systems, and low-order periodically-forced mechanical systems), we focus on a handful of case studies in which the loss of stability is primarily driven by nonconservative forces, i.e. path-dependent forces not associated with a potential. Many systems involving fluid-structure interaction can lose stability under changing conditions in which there is a net flow of energy from the fluid to the structure, sometimes resulting in growing oscillatory behavior. Again, the generic manifestations of instability typically occur within the framework of bifurcation theory. Progression is from simple local bifurcations to more complex global events, and all are related to instructive and intriguing applications. Hopf bifurcations are presented in the context of the galloping and flutter of cables and pipes. Next, Neimark bifurcations appear in aircraft applications involving the free-play fluttering of aerofoils and the wing rock of the Harrier jump-jet. Turning to ships in wind and waves, a homoclinic saddle connection governs the surging and surf-riding of a vessel in stern seas, while an omega flow explosion can compromise the course-keeping of a passenger ferry in a side wind. Recent work on the dynamic step-buckling of a spherical shell illustrates the role of a center manifold, and the paper ends with a careful study of dissipation-generated instabilities, drawing on the historical struggles to understand the evolution of spinning liquid planets.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High Pressure Hosing-Drone Dynamics and Controls;Journal of Intelligent & Robotic Systems;2023-12

2. Flutter instability in solids and structures, with a view on biomechanics and metamaterials;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-11

3. A Pressure Washing Hosing-Drone – Mitigating Reaction Forces and Torques;2022 International Conference on Unmanned Aircraft Systems (ICUAS);2022-06-21

4. Interrogating the Lead-Up to a Critical Speed in Rotordynamics;Journal of Vibration and Acoustics;2022-01-11

5. Dynamics of cylindrical structures in axial flow: A review;Journal of Fluids and Structures;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3