Second Minimal Orbits, Sharkovski Ordering and Universality in Chaos

Author:

Abdulla Ugur G.1,Abdulla Rashad U.1,Abdulla Muhammad U.1,Iqbal Naveed H.1

Affiliation:

1. Department of Mathematical Sciences, Florida Institute of Technology, 150 W University Blvd, Melbourne, Florida 32901, USA

Abstract

This paper introduces the notion of second minimal [Formula: see text]-periodic orbits of continuous maps on the interval according to whether [Formula: see text] is a successor of the minimal period of the map in the Sharkovski ordering. We pursue the classification of second minimal [Formula: see text]-orbits in terms of cyclic permutations and digraphs. It is proven that there are nine types of second minimal 7-orbits with accuracy up to inverses. The result is applied to the problem of the distribution of periodic windows within the chaotic regime of the bifurcation diagram of the one-parameter family of unimodal maps. It is revealed that by fixing the maximum number of appearances of periodic windows, there is a universal pattern of distribution. In particular, the first appearance of all the orbits is always a minimal orbit, while the second appearance is a second minimal orbit. It is observed that the second appearance of the 7-orbit is a second minimal 7-orbit with a Type 1 digraph. The reason for the relevance of the Type 1 second minimal orbit is the fact that the topological structure of the unimodal map with a single maximum, is equivalent to the structure of the Type 1 piecewise monotonic endomorphism associated with the second minimal 7-orbit. Yet another important report of this paper is the revelation of universal pattern dynamics with respect to an increased number of appearances.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Minimal set of periods for continuous self-maps of the eight space;Fixed Point Theory and Algorithms for Sciences and Engineering;2021-01-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3