CLARIFYING CHAOS: EXAMPLES AND COUNTEREXAMPLES

Author:

BROWN RAY1,CHUA LEON O.2

Affiliation:

1. Applied Chaos Technology Corporation, P.O. Box 1608, Arlington, VA 22210, USA

2. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA

Abstract

Over the past fifteen years there have been various attempts to define chaos. In an effort to find a universally acceptable definition we began constructing new examples of chaotic systems in the hope that the salient features of chaos could be captured. Our efforts to date have failed and the examples we have constructed seem to suggest that no such definition exists. However, these examples have proved to be valuable in spite of our inability to hone a universal definition of chaos from them. Consequently, we present this list of examples and their significance. Some interesting conclusions that we can draw from them are: It is possible to construct simple closed form solutions of chaotic one-dimensional maps; sensitive dependence on initial conditions, the most widely used definition of chaos, has many counterexamples; there are invertible chaotic dynamical systems defined by simple differential equations that do not have horseshoes; three important properties that are thought to characterize chaos, continuous power spectral density, exponentially sensitive dependence on initial conditions, and exponential loss of information (Chaitin’s concept of algorithmic complexity), are independent. Chaos seems to be tied to our notion of rates of divergence of orbits or degradation of information such as is found in systems with positive Lyapunov exponents. The reliance on rates seems to open the door to a pandora’s box of rates, both higher and lower than exponential. The intuitive notion of pseudo-randomness, a practical feature of chaos, is present in examples that do not have positive Lyapunov exponents. And in general, nonlinear polynomial rates of degradation of information are also quite “unpredictable”. We conclude that it appears that for any given definition of chaos, there may always be some “clearly” chaotic systems which do not fall under that definition, thus making chaos a cousin to Gödel’s undecidability.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3