Affiliation:
1. School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P. R. China
2. School of Mathematics (Zhuhai), Sun Yat-sen University, Zhuhai 519082, P. R. China
Abstract
This paper is concerned with a predator–prey model of Leslie type with simplified Holling type IV functional response, provided that it has either a unique nondegenerate positive equilibrium or three distinct positive equilibria. The type and stability of each equilibrium, Hopf cyclicity of each weak focus, and the number and distribution of limit cycles in the first quadrant are studied. It is shown that every equilibrium is not a center. If the system has a unique positive equilibrium which is a weak focus, then its order is at most [Formula: see text] and it has Hopf cyclicity [Formula: see text]. Moreover, some explicit conditions for the global stability of the unique equilibrium are established by applying Dulac’s criterion and constructing the Lyapunov function. If the system has three distinct positive equilibria, then one of them is a saddle and the others are both anti-saddles. For two anti-saddles, we prove that the Hopf cyclicity for the anti-saddle with smaller abscissa (resp., bigger abscissa) is [Formula: see text] (resp., [Formula: see text]). Furthermore, if both anti-saddle positive equilibria are weak foci, then they are unstable weak foci of order one. Moreover, one limit cycle can bifurcate from each of them simultaneously. Numerical simulations show that there is also a big stable limit cycle enclosing these two small limit cycles.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献