Affiliation:
1. School of Mathematical Sciences, South China University of Technology, Guangzhou 510640, P. R. China
2. Department of Electronic Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
Abstract
This paper reports the finding of a chaotic system with one saddle and two stable node-foci in a simple three-dimensional (3D) autonomous system. The system connects the original Lorenz system and the original Chen system and represents a transition from one to the other. The algebraical form of the chaotic attractor is very similar to the Lorenz-type systems but they are different and, in fact, nonequivalent in topological structures. Of particular interest is the fact that the chaotic system has a chaotic attractor, one saddle and two stable node-foci. To further understand the complex dynamics of the system, some basic properties such as Lyapunov exponents, bifurcations, routes to chaos, periodic windows, possible chaotic and periodic-window parameter regions, and the compound structure of the system are analyzed and demonstrated with careful numerical simulations.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
164 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献