SYNERGETICS: FROM PATTERN FORMATION TO PATTERN ANALYSIS AND PATTERN RECOGNITION

Author:

HAKEN HERMANN1

Affiliation:

1. Institute for Theoretical Physics and Synergetics, Pfaffenwaldring 57/4, 70550 Stuttgart, Germany

Abstract

It is by now well known that numerous open systems in physics (fluids, plasmas, lasers, nonlinear optical devices, semiconductors), chemistry and biology (morphogenesis) may spontaneously develop spatial, temporal or spatiotemporal structures by self-organization. Quite often, striking analogies between the corresponding patterns can be observed in spite of the fact that the underlying systems are of quite a different nature. In this paper I shall first give an outline of general concepts that allow us to deal with the spontaneous formation of structures from a unifying point of view that is based on concepts of instability, order parameters and enslavement. We shall discuss a number of generalized Ginzburg-Landau equations. In most cases treated so far, theory started from microscopic or mesoscopic equations of motion from which the evolving structures were derived. In my paper I shall address two further problems that are in a way the reverse, namely (1) Can we derive order parameters and the basic modes from observed experimental data? (2) Can we construct systems by means of an underlying dynamics that are capable of producing patterns or structures that we prescribe? In order to address (1), a new variational principle that may be derived from path intergrals is introduced and illustrated by examples. An approach to the problem (2) is illustrated by the device of a computer that recognizes patterns and that may be realized by various kinds of spontaneous pattern formations in semiconductors and lasers.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3