DISCRETE SYMMETRY AND STABILITY IN HAMILTONIAN DYNAMICS

Author:

BOUNTIS TASSOS1,CHECHIN GEORGE2,SAKHNENKO VLADIMIR2

Affiliation:

1. Department of Mathematics, University of Patras, Patras 26500, Greece

2. Department of Physics, Southern Federal University, Zorge 5, Rostov-on-Don 344090, Russia

Abstract

In the present tutorial we address a problem with a long history, which remains of great interest to date due to its many important applications: It concerns the existence and stability of periodic and quasiperiodic orbits in N-degree of freedom Hamiltonian systems and their connection with discrete symmetries. Of primary importance in our study is what we call nonlinear normal modes (NNMs), i.e. periodic solutions which represent continuations of the system's linear normal modes in the nonlinear regime. We examine questions concerning the existence of such solutions and discuss different methods for constructing them and studying their stability under fixed and periodic boundary conditions. In the periodic case, we find it particularly useful to approach the problem through the discrete symmetries of many models, employing group theoretical concepts to identify a special type of NNMs which we call one-dimensional "bushes". We then describe how to use linear combinations of s ≥ 2 such NNMs to construct s-dimensional bushes of quasiperiodic orbits, for a wide variety of Hamiltonian systems including particle chains, a square molecule and octahedral crystals in 1, 2 and 3 dimensions. Next, we exploit the symmetries of the linearized equations of motion about these bushes to demonstrate how they may be simplified to study the destabilization of these orbits, as a result of their interaction with NNMs not belonging to the same bush. Applying this theory to the famous Fermi Pasta Ulam (FPU) chain, we review a number of interesting results concerning the stability of NNMs and higher-dimensional bushes, which have appeared in the recent literature. We then turn to a newly developed approach to the analytical and numerical construction of quasiperiodic orbits, which does not depend on the symmetries or boundary conditions of our system. Using this approach, we demonstrate that the well-known "paradox" of FPU recurrences may in fact be explained in terms of the exponential localization of the energies Eq of NNM's being excited at the low part of the frequency spectrum, i.e. q = 1, 2, 3, …. These results indicate that it is the stability of these low-dimensional compact manifolds called q-tori, that is related to the persistence or FPU recurrences at low energies. Finally, we discuss a novel approach to the stability of orbits of conservative systems, expressed by a spectrum of indices called GALI k, k = 2, …, 2N, by means of which one can determine accurately and efficiently the destabilization of q-tori, leading, after very long times, to the breakdown of recurrences and, ultimately, to the equipartition of energy, at high enough values of the total energy E.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3