Affiliation:
1. School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, P. R. China
Abstract
Multiple chaotic attractors, implying several independent chaotic attractors generated simultaneously in a system from different initial values, are a very interesting and important nonlinear phenomenon, but there are few studies that have previously addressed it to our best knowledge. In this paper, we propose a polynomial function method for generating multiple chaotic attractors from the Sprott B system. The polynomial function extends the number of index-2 saddle foci, which determines the emergence of multiple chaotic attractors in the system. The analysis of the equilibria is presented. Two coexisting chaotic attractors, three coexisting chaotic attractors and four coexisting chaotic attractors are investigated for verifying the effectiveness of the method. The chaotic characteristics of the attractors are shown by bifurcation diagrams, Lyapunov exponent spectrum and phase portraits.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)
Cited by
142 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献