DETERMINISTIC LEARNING OF NONLINEAR DYNAMICAL SYSTEMS

Author:

WANG CONG1,CHEN TIANRUI1,CHEN GUANRONG2,HILL DAVID J.3

Affiliation:

1. School of Automation and Center for Control and Optimization, South China University of Technology, Guangzhou 510641, P. R. China

2. Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR., P. R. China

3. Research School of Information Sciences and Engineering, The Australian National University, Canberra ACT 0200, Australia

Abstract

In this paper, we investigate the problem of identifying or modeling nonlinear dynamical systems undergoing periodic and period-like (recurrent) motions. For accurate identification of nonlinear dynamical systems, the persistent excitation condition is normally required to be satisfied. Firstly, by using localized radial basis function networks, a relationship between the recurrent trajectories and the persistence of excitation condition is established. Secondly, for a broad class of recurrent trajectories generated from nonlinear dynamical systems, a deterministic learning approach is presented which achieves locally-accurate identification of the underlying system dynamics in a local region along the recurrent trajectory. This study reveals that even for a random-like chaotic trajectory, which is extremely sensitive to initial conditions and is long-term unpredictable, the system dynamics of a nonlinear chaotic system can still be locally-accurate identified along the chaotic trajectory in a deterministic way. Numerical experiments on the Rossler system are included to demonstrate the effectiveness of the proposed approach.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3