Affiliation:
1. Fachbereich Mathematik, J.W. Goethe Universität, Robert-Mayer-Str. 10, 60325 Frankfurt, Germany
Abstract
The method of invariant manifolds was originally developed for hyperbolic rest points of autonomous equations. It was then extended from fixed points to arbitrary solutions and from autonomous equations to nonautonomous dynamical systems by either the Lyapunov–Perron approach or Hadamard's graph transformation. We go one step further and study meaningful notions of hyperbolicity and stable and unstable manifolds for equations which are defined or known only for a finite time, together with matching notions of attraction and repulsion. As a consequence, hyperbolicity and invariant manifolds will describe the dynamics on the finite time interval. We prove an analog of the Theorem of Linearized Asymptotic Stability on finite time intervals, generalize the Okubo–Weiss criterion from fluid dynamics and prove a theorem on the location of periodic orbits. Several examples are treated, including a double gyre flow and symmetric vortex merger.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献