Quasiperiodic-Chaotic Neural Networks and Short-Term Analog Memory

Author:

Ichinose Natsuhiro1ORCID

Affiliation:

1. Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

Abstract

A model of quasiperiodic-chaotic neural networks is proposed on the basis of chaotic neural networks. A quasiperiodic-chaotic neuron exhibits quasiperiodic dynamics that an original chaotic neuron does not have. Quasiperiodic and chaotic solutions are exclusively isolated in the parameter space. The chaotic domain can be identified by the presence of a folding structure of an invariant closed curve. Using the property that the influence of perturbation is conserved in the quasiperiodic solution, we demonstrate short-term visual memory in which real numbers are acceptable for representing colors. The quasiperiodic solution is sensitive to dynamical noise when images are restored. However, the quasiperiodic synchronization among neurons can reduce the influence of noise. Short-term analog memory using quasiperiodicity is important in that it can directly store analog quantities. The quasiperiodic-chaotic neural networks are shown to work as large-scale analog storage arrays. This type of analog memory has potential applications to analog computation such as deep learning.

Funder

Japan Society for the Promotion of Science

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3