DELAY-INDUCED BIFURCATIONS IN A NONAUTONOMOUS SYSTEM WITH DELAYED VELOCITY FEEDBACKS

Author:

XU JIAN12,YU PEI1

Affiliation:

1. Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B7, Canada

2. Department of Engineering Mechanics and Technology, Tongji University, Shanghai 200092, China

Abstract

This paper investigates the bifurcations due to time delay in the feedback control system with excitation. Based on an self-sustained oscillator, the delayed velocity feedback control system is proposed. For the case without excitation, the stability of the trivial equilibrium is discussed and the condition under which the equilibrium loses its stability is obtained. This leads to a critical stability boundary where Hopf bifurcation or periodic solutions may occur. For the case with excitation, the main attention is focused on the effect of time delay on the obtained periodic solution when primary resonance occurs in the system under consideration. To this end, the control system is changed to be a functional differential equation. Functional analysis is carried out to obtain the center manifold and then a perturbation approach is used to find periodic solutions in a closed form. Moreover, the unstable regions for the limit cycles are also obtained, predicting the occurrence of some complex behaviors. Numerical simulations are employed to find the routes leading to quasi-periodic motions as the time delay is varied. It has been found that: (i) Time delay can be used to control bifurcations; and (ii) time delay can be applied to generate bifurcations. This indicates that time delay may be used as a "switch" to control or create complexity for different applications.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Delay Induced Nonlinear Dynamics;Nonlinear Dynamics of Time Delay Systems;2024

2. Hopf Bifurcation Analysis of a Housefly Model with Time Delay;International Journal of Bifurcation and Chaos;2023-07

3. Stochastic analysis of a time-delayed viscoelastic energy harvester subjected to narrow-band noise;International Journal of Non-Linear Mechanics;2022-12

4. Limit cycles and chaos induced by a nonlinearity with memory;The European Physical Journal Special Topics;2022-01-28

5. Oscillations on one dimensional time dependent center manifolds: algebraic curves approach;Collectanea Mathematica;2021-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3