A LEARNING ALGORITHM FOR OPTIMAL REPRESENTATION OF EXPERIMENTAL DATA

Author:

BREEDEN JOSEPH L.1,PACKARD NORMAN H.1

Affiliation:

1. Prediction Company, 320 Aztec St., Suite B, Santa Fe, NM 87501, USA

Abstract

We have developed a procedure for finding optimal representations of experimental data. Criteria for optimality vary according to context; an optimal state space representation will be one that best suits one’s stated goal for reconstruction. We consider an ∞-dimensional set of possible reconstruction coordinate systems that include time delays, derivatives, and many other possible coordinates; and any optimality criterion is specified as a real valued functional on this space. We present a method for finding the optima using a learning algorithm based upon the genetic algorithm and evolutionary programming. The learning algorithm machinery for finding optimal representations is independent of the definition of optimality, and thus provides a general tool useful in a wide variety of contexts.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting thermal runaway in styrene polymerization reactions: Divergence criterion with phase space reconstruction;Process Safety and Environmental Protection;2023-04

2. A survey of machine learning in credit risk;The Journal of Credit Risk;2021

3. Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems;Engineering Applications of Artificial Intelligence;2020-09

4. Measuring economic cycles in data;The Journal of Risk Model Validation;2020-03

5. ECG model parameters optimization and space state reconstruction;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2018-07-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3