Dynamics, Analysis and Implementation of a Multiscroll Memristor-Based Chaotic Circuit

Author:

Alombah N. Henry1,Fotsin Hilaire1,Ngouonkadi E. B. Megam1,Nguazon Tekou1

Affiliation:

1. Department of Physics, University of Dschang, P.O. Box 067, Dschang, Cameroon

Abstract

This article introduces a novel four-dimensional autonomous multiscroll chaotic circuit which is derived from the actual simplest memristor-based chaotic circuit. A fourth circuit element — another inductor — is introduced to generate the complex behavior observed. A systematic study of the chaotic behavior is performed with the help of some nonlinear tools such as Lyapunov exponents, phase portraits, and bifurcation diagrams. Multiple scroll attractors are observed in Matlab, Pspice environments and also experimentally. We also observe the phenomenon of antimonotonicity, periodic and chaotic bubbles, multiple periodic-doubling bifurcations, Hopf bifurcations, crises and the phenomenon of intermittency. The chaotic dynamics of this circuit is realized by laboratory experiments, Pspice simulations, numerical and analytical investigations. It is observed that the results from the three environments agree to a great extent. This topology is likely convenient to be used to intentionally generate chaos in memristor-based chaotic circuit applications, given the fact that multiscroll chaotic systems have found important applications as broadband signal generators, pseudorandom number generators for communication engineering and also in biometric authentication.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review on memristor application in neural circuit and network;Chaos, Solitons & Fractals;2024-10

2. Application of two general Memristor models in chaotic systems;Memristors - the Fourth Fundamental Circuit Element - Theory, Device, and Applications [Working Title];2023-11-23

3. Dynamics in a memristive neuron under an electromagnetic field;Nonlinear Dynamics;2023-11-04

4. Dynamics of a simple third-order autonomous MLC circuit;Physica Scripta;2023-09-21

5. Use of memristor-based chaotic circuits in AM-DCSK and FM-DCSK modulation;Physica Scripta;2023-09-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3