MULTIPLE HOMOCLINIC BIFURCATIONS FROM ORBIT-FLIP I: SUCCESSIVE HOMOCLINIC DOUBLINGS

Author:

KOKUBU HIROSHI1,KOMURO MOTOMASA2,OKA HIROE3

Affiliation:

1. Department of Mathematics, Kyoto University, Kyoto 606–01, Japan

2. Department of Mathematics, The Nishi-Tokyo University, Yamanashi 409–01, Japan

3. Department of Applied Mathematics and Informatics, Faculty of Science and Technology, Ryukoku University, Seta, Otsu 520–21, Japan

Abstract

The purpose of this and forthcoming papers is to obtain a better understanding of complicated bifurcations for multiple homoclinic orbits. We shall take one particular type of codimension two homoclinic orbits called orbit-flip and study bifurcations to multiple homoclinic orbits appearing in a tubular neighborhood of the original orbit-flip. The main interest of the present paper lies in the occurrence of successive homoclinic doubling bifurcations under an appropriate condition, which is a part of the entire bifurcation for multiple homoclinic orbits. Since this is a totally global bifurcation, we need the aid of numerical experiments for which we must choose a concrete set of ordinary differential equations that exhibits the desired bifurcation. In this paper we employ a family of continuous piecewise-linear vector fields for such a model equation. In order to explain the cascade of homoclinic doubling bifurcations theoretically, we also derive a two-parameter family of unimodal maps as a singular limit of the Poincaré maps along homoclinic orbits. We locate bifurcation curves for this family of unimodal maps in the two-dimensional parameter space, which basically agree with those for the piecewise-linear vector fields. In particular, we show, using a standard technique from the theory of unimodal maps, that there exists an infinite sequence of doubling bifurcations which corresponds to the sequence of homoclinic doubling bifurcations for the piecewise-linear vector fields described above. Since our unimodal map has a singularity at a boundary point of its domain of definition, the doubling bifurcation is slightly different from that for standard quadratic unimodal maps, for instance the Feigenbaum constant associated with the accumulation of the doubling bifurcations is different from the standard value 4.6692.…

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3