Bifurcations Leading to Nonlinear Oscillations in a 3D Piecewise Linear Memristor Oscillator

Author:

Scarabello Marluce da Cruz1,Messias Marcelo1

Affiliation:

1. Departamento de Matemática e Computação, Faculdade de Ciências e Tecnologia, UNESP – Universidade Estadual Paulista, 19060-900, Presidente Prudente, São Paulo, Brazil

Abstract

In this paper, we make a bifurcation analysis of a mathematical model for an electric circuit formed by the four fundamental electronic elements: one memristor, one capacitor, one inductor and one resistor. The considered model is given by a discontinuous piecewise linear system of ordinary differential equations, defined on three zones in ℝ3, determined by |z| < 1 (called the central zone) and |z| > 1 (the external zones). We show that the z-axis is filled by equilibrium points of the system, and analyze the linear stability of the equilibria in each zone. Due to the existence of this line of equilibria, the phase space ℝ3 is foliated by invariant planes transversal to the z-axis and parallel to each other, in each zone. In this way, each solution is contained in a three-piece invariant set formed by part of a plane contained in the central zone, which is extended by two half planes in the external zones. We also show that the system may present nonlinear oscillations, given by the existence of infinitely many periodic orbits, each one belonging to one such invariant set and passing by two of the three zones or passing by the three zones. These orbits arise due to homoclinic and heteroclinic bifurcations, obtained varying one parameter in the studied model, and may also exist for some fixed sets of parameter values. This intricate phase space may bring some light to the understanding of these memristor properties. The analytical and numerical results obtained extend the analysis presented in [Itoh & Chua, 2009; Messias et al., 2010].

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3