PERIODIC AND HOMOCLINIC ORBITS IN A TWO-PARAMETER UNFOLDING OF A HAMILTONIAN SYSTEM WITH A HOMOCLINIC ORBIT TO A SADDLE-CENTER

Author:

KOLTSOVA O. Yu.1,LERMAN L.M.2

Affiliation:

1. Volga State Academy of Water Transport, Nizhny Novgorod, 603005, Russia

2. Research Institute for Applied Mathematics and Cybernetics, Nizhny Novgorod, 603005, Russia

Abstract

For a two-degrees-of-freedom Hamiltonian system with a homoclinic orbit (loop) to a saddle-center we prove that the Poincaré map on a section to the loop within the Hamiltonian level containing a saddle-center is a twist map with discontinuity at the point of intersection with the loop. It explains the reason for existence of a countable set of periodic orbits near the loop. The types of these orbits are determined. We discover homoclinic doubling and tripling in a generic two-parameter Hamiltonian unfolding of such a Hamiltonian system. Besides this, we also study the nonautonomous linear Hamiltonian system obtained by means of the linearization of the original system at the loop. We derive the invariant formulation of the genericity condition that is needed for studying the original system.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Existence of multi-hump generalized homoclinic solutions for a class of reversible systems;Science China Mathematics;2024-07-16

2. Solitons and cavitons in a nonlocal Whitham equation;Communications in Nonlinear Science and Numerical Simulation;2021-02

3. Saddle-center and periodic orbit: Dynamics near symmetric heteroclinic connection;Chaos: An Interdisciplinary Journal of Nonlinear Science;2021-02

4. Horseshoes and invariant tori in cosmological models with a coupled field and non-zero curvature *;Classical and Quantum Gravity;2020-09-10

5. Systems of Transversal Sections near Critical Energy Levels of Hamiltonian Systems in ℝ⁴;Memoirs of the American Mathematical Society;2018-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3