Turing Patterns in the Lengyel–Epstein System with Superdiffusion

Author:

Liu Biao1,Wu Ranchao1ORCID,Iqbal Naveed1,Chen Liping2

Affiliation:

1. School of Mathematical Sciences, Anhui University, Hefei 230601, P. R. China

2. School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, P. R. China

Abstract

Turing instability and pattern formation in the Lengyel–Epstein (L–E) model with superdiffusion are investigated in this paper. The effects of superdiffusion on the stability of the homogeneous steady state are studied in detail. In the presence of superdiffusion, instability will occur in the stable homogeneous steady state and more complex dynamics will exist. As a result of Turing instability, some patterns are formed. Through stability analysis of the system at the equilibrium point, conditions ensuring Turing and Hopf bifurcations are obtained. To further explore pattern selection, the weakly nonlinear analysis and multiple scale analysis are employed to derive amplitude equations of the stationary patterns. Then complex dynamics of amplitude equations, such as the existence of homogeneous solutions, stripe and hexagon patterns, mixed structure patterns, their stability, interaction and transition between them, are analyzed. Then different patterns occur immediately. Finally, the numerical simulations are presented to show the effectiveness of theoretical analysis and patterns are identified numerically. Whereas in the existing results of such model with normal diffusion, no amplitude equations are derived and patterns are only identified through numerical simulations.

Funder

National Natural Science Foundation of China

specialized research fund for the doctoral program of higher dducation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3