METHODS OF THE QUALITATIVE THEORY FOR THE HINDMARSH–ROSE MODEL: A CASE STUDY – A TUTORIAL

Author:

SHILNIKOV ANDREY1,KOLOMIETS MARINA2

Affiliation:

1. The Neuroscience Institute and Department of Mathematics and Statistics, Georgia State University, Atlanta, USA

2. Department of Mathematics, Academy of Agricultural Sciences, Nizhniy Novgorod, Russia

Abstract

Homoclinic bifurcations of both equilibria and periodic orbits are argued to be critical for understanding the dynamics of the Hindmarsh–Rose model in particular, as well as of some square-wave bursting models of neurons of the Hodgkin–Huxley type. They explain very well various transitions between the tonic spiking and bursting oscillations in the model. We present the approach that allows for constructing Poincaré return mapping via the averaging technique. We show that a modified model can exhibit the blue sky bifurcation, as well as, a bistability of the coexisting tonic spiking and bursting activities. A new technique for localizing a slow motion manifold and periodic orbits on it is also presented.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Reference93 articles.

1. International Series of Monographs in Physics;Andronov A. A.,1966

2. Israel Program of Scientific Translation;Andronov A. A.,1971

3. Encyclopaedia of Mathematical Sciences;Arnold V. I.,1984

4. Spiking-Bursting Activity in the Thalamic Reticular Nucleus Initiates Sequences of Spindle Oscillations in Thalamic Networks

Cited by 141 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pairing cellular and synaptic dynamics into building blocks of rhythmic neural circuits. A tutorial;Frontiers in Network Physiology;2024-06-25

2. Bursting Dynamics of the 3-D Hindmarsh-Rose Neuron Model Under Periodic Excitation;Journal of Vibration Engineering & Technologies;2024-06-24

3. Spiral attractors in a reduced mean-field model of neuron–glial interaction;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-06-01

4. Synchronization of two non-identical Chialvo neurons;Chaos, Solitons & Fractals;2024-06

5. Exploring the geometry of the bifurcation sets in parameter space;Scientific Reports;2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3