Easily Cascaded Memristor-CMOS Hybrid Circuit for High-Efficiency Boolean Logic Implementation

Author:

Dong Zhekang1ORCID,Qi Donglian1,He Yufei2,Xu Zhao2,Hu Xiaofang3ORCID,Duan Shukai3

Affiliation:

1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, P. R. China

2. Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, P. R. China

3. School of Computer and Information Science, College of Electronics and Information Engineering, Southwest University, Chongqing 400715, P. R. China

Abstract

Memristor is a novel passive electronic element with resistance-switching dynamics. Due to the threshold property and the variable conductivity of the memristive element, its composite circuits are promising for the implementation of logic operations. In this paper, a flexible logic circuit based on the threshold-type memristor and the mature complementary metal-oxide-semiconductor (CMOS) technology is designed for the realization of Boolean logic operations. Specifically, the proposed method is able to perform the NAND, AND, OR, and NOR gate operations through two phases, i.e. the writing operation and the reading operation. In such implementation, the total delay is very small especially for time-sequence inputs. Furthermore, for existing memristor-based logic implementation, a contrastive analysis with relevant computer simulations is carried out. The experimental results indicate that the proposed method is capable of realizing all basic Boolean logic operations, and some more complicated cascaded logic operations with more compact circuit structures, higher efficiency, and lower operating cost.

Funder

National Natural Science Foundation of China

Fundamental Science and Advanced Technology Research Foundation of Chongqing

Chongqing Postdoctoral Science Foundation Special Funded

Doctoral foundation of Southwest University

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3