Complex Dynamics in the Unified Lorenz-Type System

Author:

Yang Qigui1,Chen Yuming1

Affiliation:

1. School of Mathematical Sciences, South China University of Technology, Guangzhou 510640, P. R. China

Abstract

This paper is devoted to the analysis of complex dynamics of the unified Lorenz-type system (ULTS) with six parameters, which contain common chaotic systems as its particular cases. First, some important local dynamics such as pitchfork bifurcation, Hopf bifurcation, and the stability of nondegenerate and double-zero equilibria are systematically investigated using the parameter-dependent center manifold theory combined with some bifurcation theories. Some adequate conditions for guaranteeing the occurrence of degenerate Hopf bifurcation (DHB) and the stability of the equilibria are given. Second, it is found that if DHB does not generate at the trivial equilibrium but generates at two symmetric nontrivial equilibria, then a small perturbation can lead that ULTS to exhibit a chaotic attractor. Interestingly, such a case can take place in the Chen and Lü systems (two common chaotic systems) but cannot take place in the Lorenz and Yang systems (the other two common chaotic systems), essentially distinguishing the Lorenz system from the Chen system. In addition, it is numerically verified that both of the latter two systems can exhibit the coexistence of both a chaotic attractor and multiple limit cycles but the former two systems seem not to have this property. If DHB takes place simultaneously at three equilibria of ULTS, then this system has an invariant algebraic surface, and rigorously prove the existence of some global dynamics such as periodic orbit, center, homoclinic/heteroclinic orbits. Third, it is shown that a singularly degenerate heteroclinic cycle can exist in the case of b = 0 (where b is a parameter of ULTS, like that in the Lorenz system), and a chaotic attractor can be generated by perturbing this cycle for small b > 0. These results altogether indicate that the ULTS can exhibit complex dynamics, and provide a more reasonable classification for chaos in the 3D autonomous chaotic ODE systems that were developed based on the Lorenz system, in contrast to the previous studies.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Li–Yorke Chaos in Linear Systems with Weak Topology on Hilbert Spaces;International Journal of Bifurcation and Chaos;2024-07-20

2. Multitudinous potential homoclinic and heteroclinic orbits seized;Electronic Research Archive;2024

3. A new hybrid chaotic system and its analysis;International Journal of Information and Computer Security;2024

4. Limit Cycles from Perturbed Center on the Invariant Algebraic Surface of Unified Lorenz-Type System;International Journal of Bifurcation and Chaos;2023-11

5. Chaotic Dynamics Arising from Sliding Heteroclinic Cycles in 3D Filippov Systems;International Journal of Bifurcation and Chaos;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3