Affiliation:
1. Departamento de Matemáticas y Estadística, Universidad del Tolima, Ibagué, 730006299, Colombia
Abstract
This article investigates the dynamics of cancer through a coupled system of three nonlinear ordinary differential equations. The evolution of the cancer tumour is examined under the variation of the immune cell activation parameter, and the study determines the values of this parameter that cause changes in the dynamics of this evolution; these changes are a consequence of two transcritical bifurcations and a supercritical Hopf bifurcation that exist in the system. These results reveal the range of immune cell activation for which tumour escape or tumour latency, or oscillatory behavior due to the appearance of limit cycles, is achieved. In addition, an optimal value is distinguished for which a minimum number of active immune response cells is sufficient to bring the tumour to a latent state.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献