3D Grid Multi-Wing Chaotic Attractors

Author:

Yu Nan1,Wang Yan-Wu1ORCID,Liu Xiao-Kang1,Xiao Jiang-Wen1

Affiliation:

1. School of Automation, Huazhong University of Science and Technology, Key Laboratory of Image Processing and Intelligent Control, Ministry of Education, Wuhan 430074, P. R. China

Abstract

As reported in the existing literature, wing attractors are confined to 1D [Formula: see text]-wing attractors, 2D [Formula: see text]-grid wing attractors. In this paper, we break this limitation and generate 3D [Formula: see text]-grid multi-wing chaotic attractors (GMWCAs). The 3D GMWCAs are produced via the following three steps: (1) applying rotation transformation to a double-wing Lorenz-like system to ensure that its saddle-focus equilibria with index 2 are located on the plane [Formula: see text]; (2) extending the wing attractors of the transformed Lorenz-like system along the [Formula: see text]-axis to have mirror symmetry; (3) introducing stair switching functions to increase the number of saddle-focus equilibria with index 2 along the [Formula: see text]-axis and [Formula: see text]-axis. Furthermore, some basic dynamical properties of the 3D chaotic system, including equilibria, symmetry, dissipativity, Lyapunov exponents and bifurcation diagram, are investigated and a module-based unified circuit diagram is designed. The effectiveness of this approach is confirmed by both numerical simulations and electrical circuit experiment.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3