Affiliation:
1. Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran
Abstract
In this paper, we consider a reduction of the Gierer–Meinhardt Activator–Inhibitor model. In the absence of diffusion, we determine the global dynamics of the homogeneous system. Then, we study the effect of the diffusion constants on the stability of a homogeneous steady state. By choosing a proper bifurcation parameter, we prove that, under some suitable conditions on the parameters, a generalized Hopf bifurcation occurs in the inhomogeneos model. We compute the normal form of this bifurcation up to the fifth order. Furthermore, the direction of the Hopf bifurcation is obtained by the normal form theory. Finally, we provide some numerical simulations to justify our theoretical results.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献