FEEDBACK SYNCHRONIZATION OF CHAOTIC SYSTEMS

Author:

SARASOLA C.1,TORREALDEA F. J.2,D'ANJOU A.2,MOUJAHID A.2,GRAÑA M.2

Affiliation:

1. Department of Physics of Materials, University of the Basque Country, 20018 San Sebastian, Spain

2. Department of Computer Science, University of the Basque Country, 20018 San Sebastian, Spain

Abstract

Feedback coupling through an interaction term proportional to the difference in the value of some behavioral characteristics of two systems is a very common structural setting that leads to synchronization of the behavior of both systems. The degree of synchronization attained depends on the strength of the interaction term and on the mutual interdependency of the structures of both systems. In this paper, we show that two chaotic systems linked through a feedback coupling interaction term of gain parameter k reach a synchronized regime characterized by a vector of variable errors which tends towards zero with parameter k while the interaction term tends towards a finite nonzero permanent regime. This means that maintaining a certain degree of synchronization has a cost. In the limit, complete synchronization occurs at a finite limit cost. We show that feedback coupling in itself brings about conditions permitting that systems with a degree of structural parameter flexibility evolve close towards each other structures in order to facilitate the maintenance of the synchronized regime. In this paper, we deduce parameter adaptive laws for any family of homochaotic systems provided they are previously forced to work, via feedback coupling, within an appropriate degree of synchronization. The laws are global in the space of parameters and lead eventually to identical synchronization at no interaction cost. We illustrate this point with homochaotic systems from the Lorenz, Rössler and Chua families.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3