Synchronization of a Memristor Chaotic System and Image Encryption

Author:

Li Haoyu12,Wang Leimin12,Lai Qiang3

Affiliation:

1. School of Automation, China University of Geosciences, Wuhan 430074, P. R. China

2. Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Engineering Research Center of Intelligent Technology for Geo-Exploration, Ministry of Education, P. R. China

3. School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, P. R. China

Abstract

In this paper, a sliding-mode-based controller is designed for finite-time synchronization of Memristor Chaotic Systems (MCSs). It demonstrates that the synchronization errors of the MCSs reach the designed sliding-mode surface within a finite time and the finite-time stability is achieved on the surface, which implies that the finite-time synchronization for MCSs is achieved by employing the proposed sliding-mode-based controller. Furthermore, a new image encryption algorithm is proposed and implemented based on the results of finite-time synchronization. Finally, the numerical simulation and the corresponding statistical performance analysis are presented to verify the practicability, effectiveness and superiority of the presented sliding-mode-based controller and encryption algorithm, especially their potential applications in secure communication.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3