GENERALIZED MANDELBROT SETS FOR MEROMORPHIC COMPLEX AND QUATERNIONIC MAPS

Author:

BUCHANAN WALTER1,GOMATAM JAGANNATHAN1,STEVES BONNIE1

Affiliation:

1. Department of Mathematics, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, Scotland

Abstract

The concepts of the Mandelbrot set and the definition of the stability regions of cycles for rational maps require careful investigation. The standard definition of the Mandelbrot set for the map f : z → z2+ c (the set of c values for which the iteration of the critical point at 0 remains bounded) is inappropriate for meromorphic maps such as the inverse square map. The notion of cycle sets, introduced by Brooks and Matelski [1978] for the quadratic map and applied to meromorphic maps by Yin [1994], facilitates a precise definition of the Mandelbrot parameter space for these maps. Close scrutiny of the cycle sets of these maps reveals generic fractal structures, echoing many of the features of the Mandelbrot set. Computer representations confirm these features and allow the dynamical comparison with the Mandelbrot set. In the parameter space, a purely algebraic result locates the stability regions of the cycles as the zeros of characteristic polynomials. These maps are generalized to quaternions. The powerful theoretical support that exists for complex maps is not generally available for quaternions. However, it is possible to construct and analyze cycle sets for a class of quaternionic rational maps (QRM). Three-dimensional sections of the cycle sets of QRM are nontrivial extensions of the cycle sets of complex maps, while sharing many of their features.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Reference22 articles.

1. Iteration of Rational Functions

2. R. Brooks and J. P. Matelski, Proc. 1978 Stony Brook Conf., Annals of Mathematical Studies, No. 97, eds. I. Kra and B. Maskit (Princeton University Press, 1981) pp. 65–71.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamics of the coquaternionic maps x2 + bx;Rendiconti del Circolo Matematico di Palermo Series 2;2022-01-25

2. Iteration of Quadratic Maps on Coquaternions;International Journal of Bifurcation and Chaos;2017-11

3. Basins of attraction for a quadratic coquaternionic map;Chaos, Solitons & Fractals;2017-11

4. ITERATION OF QUADRATIC MAPS ON MATRIX ALGEBRAS;International Journal of Bifurcation and Chaos;2012-06

5. LINEAR GENERALIZED SYNCHRONIZATION OF SPATIAL JULIA SETS;International Journal of Bifurcation and Chaos;2011-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3