DISTURBANCE CHAOTIC ANT SWARM

Author:

GE FANGZHEN12,WEI ZHEN1,LU YANG1,LI LIXIANG3,YANG YIXIAN3

Affiliation:

1. School of Computer and Information, Hefei University of Technology, Hefei 230009, P. R. China

2. School of Computer Science and Technology, Huaibei Normal University, Huaibei 235000, P. R. China

3. Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China

Abstract

Chaotic Ant Swarm (CAS) is an optimization algorithm based on swarm intelligence theory, which has been applied to find the global optimum solution in search space. However, it often loses its effectiveness and advantages when applied to large and complex problems, e.g. those with high dimensions. To resolve the problems of high computational complexity and low solution accuracy existing in CAS, we propose a Disturbance Chaotic Ant Swarm (DCAS) algorithm to significantly improve the performance of the original algorithm. The aim of this paper is achieved by three strategies which include modifying the method of updating ant's best position, neighbor selection method and establishing a self-adaptive disturbance strategy. The global convergence of the DCAS algorithm is proved in this paper. Extensive computational simulations and comparisons are carried out to validate the performance of the DCAS on two sets of benchmark functions with up to 1000 dimensions. The results show clearly that DCAS substantially enhances the performance of the CAS paradigm in terms of computational complexity, global optimality, solution accuracy and algorithm reliability for complex high-dimensional optimization problems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3